53 research outputs found

    High Power Tests of Normal Conducting Single-Cell Structures

    Get PDF
    We report the results of the first high power tests of single-cell traveling-wave and standing-wave structures. These tests are part of an experimental and theoretical study of rf breakdown in normal conducting structures at 11.4 GHz. The goal of this study is to determine the gradient potential of normal-conducting rf-powered particle beam accelerators. The test setup consists of reusable mode converters and short test structures and is powered by SLAC's XL-4 klystron. This setup was created for economical testing of different cell geometries, cell materials and preparation techniques with short turn-around time. The mode launchers and structures were manufactured at SLAC and KEK and tested in the SLAC Klystron Test Lab

    The Next Linear Collider Test Accelerator

    Get PDF
    During the past several years, there has been tremendous progress on the development of the RF system and accelerating structures for a Next Linear Collider (NLC). Developments include high-power klystrons, RF pulse compression systems and damped/detuned accelerator structures to reduce wakefields. In order to integrate these separate development efforts into an actual X-band accelerator capable of accelerating the electron beams necessary for an NLC, we are building an NLC Test Accelerator (NLCTA). The goal of the NLCTA is to bring together all elements of the entire accelerating system by constructing and reliably operating an engineered model of a high-gradient linac suitable for the NLC. The NLCTA will serve as a testbed as the design of the NLC evolves. In addition to testing the RF acceleration system, the NLCTA is designed to address many questions related to the dynamics of the beam during acceleration. In this paper, we will report on the status of the design, component development, and construction of the NLC Test Accelerator

    International Study Group Progress Report On Linear Collider Development

    Get PDF
    • …
    corecore